
Security Assessment Report  

The ChampCoin (TCC)  
 

This document proves, from the given source code alone, that The ChampCoin satisfies a set of 
concrete security properties. The arguments below are constructive and refer directly to function 
bodies and state transitions. No external libraries, proxies, upgrade hooks, or unverified code 
exist in scope. 

Contract address: 0x1831257D6FEF2b83354a75b19B8aAf8f6514D3DA 

Explorer Link: https://bscscan.com/token/0x1831257D6FEF2b83354a75b19B8aAf8f6514D3DA 

Token Name : The ChampCoin 

symbol : TCC  

decimals : 18 decimals 

Token Logo:  

Total supply: 70,000,000 TCC created once at deployment and sent to the deployer’s address. 

Type : Standard ERC-20/BEP-20 token. 

Source Code Status: Verified ✅ 

SECURITY SUMMARY: 

The ChampCoin (TCC) contract is intentionally simple and locked down: fixed 
supply, no fees, no freeze, and no mint/burn after deployment. From a 
contract-level perspective, that’s a solid, low-risk design for everyday holders. 
However beware of similar fake tokens, phishing, and avoid approvals from 
untrusted third party apps.  

 

 

 

https://bscscan.com/token/0x1831257D6FEF2b83354a75b19B8aAf8f6514D3DA


GENERAL CAPABILITIES: 

What it can and can’t do 
It CAN: 

●​ Let people send and receive TCC.​
 

●​ Let you approve another address (like a DEX) to spend your TCC on your behalf.​
 

It CANNOT (by design): 

●​ Mint new tokens (no inflation).​
 

●​ Burn tokens (supply won’t go down via the contract).​
 

●​ Freeze/blacklist wallets.​
 

●​ Charge transfer fees.​
 

●​ Pause transfers.​
 

●​ Make outside calls during transfers (reduces attack surface). 

 

WHO CONTROLS WHAT? ​
The owner cannot mint, burn, freeze, skim fees, or change balances. 

The owner can also renounce ownership (set it to zero address), which removes even that 
limited control. 

RISK PROFILE (VERY LOW) 

●​ Fixed supply: The contract code only creates tokens once. There’s no code path to 
create more later.​
 

●​ No external calls in transfers/approvals: this cuts off common re-entrancy tricks.​
 

●​ Checked math: The Solidity version used automatically blocks overflows/underflows.​
 

●​ Zero-address blocks: The contract rejects sending to or approving the zero address 
(prevents accidental loss and nonsense approvals). 

 



Simple FAQ 
Q: Can the team print more TCC later?​
 A: No. The code doesn’t have any mint function available after launch. 

Q: Can the team freeze my wallet or charge transfer fees?​
 A: No. There are no such functions. 

Q: Is there a burn feature?​
 A: No. Sending to the zero address is blocked and there’s no burn() function. 

Q: What happens if I approve a DEX for 1,000 TCC?​
 A: That DEX (or its smart contracts) can move up to 1,000 TCC from your wallet. Reduce or 
revoke later if you want. 

 

 

 

TECHNICAL REPORT 

 

0) Model & Notation 
●​ State.​

 _totalSupply : uint256​
 _balances : mapping(address ⇒ uint256)​
 _allowances : mapping((address, address) ⇒ uint256)​
 _owner : address, _pendingOwner : address​
 

●​ Events do not affect state.​
 

●​ Arithmetic. Solidity ≥0.8.0 reverts on over/underflow except inside unchecked blocks.​
 

●​ Codebase. Single contract; _mint is internal and invoked only once in the 
constructor.​
 

We use Hoare-style reasoning {Pre} f(...) {Post} and inductive invariants over 
executions. 

 



 

1) Supply-Cap Correctness 

Theorem 1 (Fixed Upper Bound). 

For all reachable states after construction, totalSupply() == MAX_SUPPLY and never 
exceeds MAX_SUPPLY. 

Proof. 

1.​ The constructor sets _owner = msg.sender and calls _mint(_owner, 
MAX_SUPPLY).​
 

2.​ _mint requires to != 0 and computes newSupply = _totalSupply + value. It 
enforces require(newSupply <= MAX_SUPPLY, "Cap exceeded"). Initially 
_totalSupply = 0, so newSupply = MAX_SUPPLY and the call succeeds, setting 
_totalSupply = MAX_SUPPLY.​
 

3.​ _mint is internal and only called in the constructor; there is no other caller in the 
code.​
 

4.​ No function decreases _totalSupply. No other function increases _totalSupply.​
 Therefore totalSupply() is exactly MAX_SUPPLY in every post-construction state 
and can never exceed it. ∎​
 

 

2) Conservation of Tokens 

Theorem 2 (Balance Conservation). 

For any call to transfer or transferFrom that does not revert, the sum of balances remains 
constant and equals MAX_SUPPLY. 

Proof. 

●​ _transfer(from, to, value) is the only code path that changes balances 
post-construction. It requires from != 0, to != 0, fromBal = _balances[from], 
and fromBal >= value. Inside one guarded unchecked block, it sets 

 



_balances[from] = fromBal - value, then _balances[to] += value.​
 

●​ No other storage slot is modified. Thus Δ_balances[from] = -value and 
Δ_balances[to] = +value, so the sum is unchanged.​
 

●​ By Theorem 1, sum(balances) = totalSupply = MAX_SUPPLY after construction; 
conservation under _transfer preserves this invariant for all future states. ∎​
 

 

3) Zero-Address Safety 

Theorem 3 (No Balance or Allowance for address(0) is Creatable 
Post-Construction). 

No successful external call can create a balance or allowance for the zero address, nor transfer 
to or from it. 

Proof. 

●​ _transfer reverts if from == 0 or to == 0.​
 

●​ _approve reverts if tokenOwner == 0 or spender == 0.​
 

●​ _mint reverts if to == 0; it is only called in the constructor, where to = _owner != 
0.​
 Hence, after deployment, no valid execution can produce non-zero _balances[0] or 
_allowances[*,0]/_allowances[0,*], nor can it transfer to/from zero. ∎​
 

 

4) Allowance Accounting & Safety 

Lemma 4.1 (Monotone Decrement in transferFrom). 

If transferFrom(from,to,value) succeeds, then the pre-state has currentAllowance 
= _allowances[from][msg.sender] ≥ value, and the post-state sets 
_allowances[from][msg.sender] = currentAllowance - value. 

 



Proof.​
 Function body: 

●​ Reads currentAllowance = _allowances[from][msg.sender].​
 

●​ If currentAllowance < value → revert.​
 

●​ In an unchecked block, calls _approve(from, msg.sender, currentAllowance 
- value).​
 

●​ Then calls _transfer(from, to, value).​
 Thus the allowance is decreased exactly by value upon success. The decrement is 
safe because the guard prevents underflow. ∎​
 

Lemma 4.2 (Approval Writes Are Exact). 

approve(spender, value) and _approve(tokenOwner, spender, value) set 
_allowances[tokenOwner][spender] = value and emit Approval with that exact 
value. 

Proof.​
 From _approve: assignment is direct; there are no additional arithmetic operations. ∎ 

Theorem 4 (Allowance Correctness). 

For any (owner,spender), _allowances[owner][spender] equals the last explicit 
_approve(owner,spender,·) value minus the sum of successful transferFrom spends 
by spender against owner since that approval (and never negative). 

Proof.​
 By Lemma 4.2, approvals write exact values. By Lemma 4.1, each successful spend subtracts 
exactly the spent amount; guards prevent underflow. No other path mutates that mapping. ∎ 

 

5) Reentrancy & External-Call Surface 

Theorem 5 (No Reentrancy from Token Operations). 

transfer, transferFrom, approve, increaseAllowance, decreaseAllowance contain 
no external calls and thus cannot yield control to untrusted code mid-update. 

 



Proof.​
 Inspection of bodies shows only: storage updates, arithmetic, and emit statements. No call, 
delegatecall, staticcall, transfer (ETH), or interface invocations appear. Solidity 
event emission is not an external call and does not transfer control. Therefore, no reentrancy 
vector exists along these code paths. ∎ 

 

6) Ownership Safety & Progress 

Lemma 6.1 (Only Owner Can Initiate Transfer). 

transferOwnership(newOwner) is gated by onlyOwner; it reverts if msg.sender != 
_owner. 

Lemma 6.2 (Unique Acceptance Right). 

acceptOwnership() requires msg.sender == _pendingOwner else reverts, then sets 
_owner = _pendingOwner and _pendingOwner = 0. 

Lemma 6.3 (Renounce Clears Roles). 

renounceOwnership() (gated by onlyOwner) sets _owner = 0 and _pendingOwner = 
0. 

Theorem 6 (Two-Step Ownership Safety & Liveness). 

●​ Safety: Ownership can only change to an address that previously became 
_pendingOwner via an owner-authorized call; no other address can seize ownership.​
 

●​ Liveness: Once transferOwnership(X) succeeds, X can acquire ownership by 
calling acceptOwnership(); no other state transitions can prevent this, and the 
original owner may overwrite _pendingOwner by re-invoking 
transferOwnership(Y) if needed.​
 

Proof.​
 Safety follows from Lemma 6.1 and Lemma 6.2: the only state that assigns _owner is inside 
acceptOwnership, guarded by identity equality to _pendingOwner. Liveness follows 
because no function can set _pendingOwner except transferOwnership, and acceptance 

 



is always available to _pendingOwner until overwritten or renounced; no third-party action can 
interpose. ∎ 

 

7) Non-Mintable, Non-Burnable, Non-Pausable, Non-Fee 
Properties 

Theorem 7 (No Post-Deploy Minting). 

Post-construction, _mint is never callable (it is internal and referenced only in the 
constructor). No other function increases _totalSupply or any _balances[*] except via 
_transfer, which preserves the supply (Theorem 2). ∎ 

Theorem 8 (No Burning). 

There is no burn function; _transfer prohibits to == 0. Therefore, no burn path exists. ∎ 

Theorem 9 (No Pausing/Blacklisting/Fees). 

No state or function references any pause flag, blacklist set, fee variables, or redirection logic. 
Transfers do not alter amounts except the exact sender-to-recipient move. Thus there can be no 
fee skims, freezes, or selective blocks derivable from the code. ∎ 

 

8) Overflow/Underflow Soundness 

Theorem 10 (No Arithmetic Wraparound in Checked Regions). 

In all non-unchecked contexts, Solidity ^0.8.30 reverts on overflow/underflow, preventing 
wraparound. 

Proof. Language semantics. ∎ 

Theorem 11 (Correctness of unchecked Blocks). 

All unchecked arithmetic operations are preceded by guards that make the operation safe: 

●​ In _transfer, fromBal >= value ensures fromBal - value does not underflow.​
 

 



●​ In transferFrom, currentAllowance >= value ensures currentAllowance - 
value does not underflow.​
 

No unchecked additions exist. Therefore, no silent wraparound is possible. ∎ 

 

9) Event Correctness 

Theorem 12 (Standards-Consistent Events). 

●​ _approve emits Approval(owner, spender, value) exactly matching the written 
allowance.​
 

●​ _transfer emits Transfer(from, to, value) exactly matching the state deltas.​
 

●​ Constructor mint emits Transfer(0, _owner, MAX_SUPPLY) as required by 
ERC-20 mint semantics.​
 

●​ Ownership transitions emit OwnershipTransferStarted and 
OwnershipTransferred reflecting the actual role changes.​
 

Proof. Direct reading of emit sites; arguments are the same variables used in state updates. ∎ 

 

10) BEP-20 Surface Completeness 

Theorem 13 (Explorer Compatibility). 

getOwner() returns _owner. This satisfies the BEP-20 explorer convention and is read-only; 
no side effects exist. 

Proof. Pure view function returning the storage slot. ∎ 

 

11) Composability Guarantees 

 



Theorem 14 (ERC-20 Method Set & Return Values). 

The contract exposes totalSupply, balanceOf, allowance, transfer, approve, 
transferFrom, each returning bool where applicable, and emitting canonical events. 
Therefore, any integration expecting a vanilla ERC-20 will execute without adaptation. 

Proof. Function signatures and return paths match the standard; there are no revert-on-success 
or nonstandard behaviors. ∎ 

 

12) Global Invariant Set 
By induction on the execution trace (constructor base case; step case via §§2–11), the following 
invariants hold in all reachable post-construction states: 

1.​ totalSupply() == MAX_SUPPLY.​
 

2.​ ∀a: _balances[a] ≥ 0 (always true for uint256) and ∑_a _balances[a] == 
MAX_SUPPLY.​
 

3.​ ∀(o,s): _allowances[o][s] equals the last approved value minus the sum of 
successful spends by s from o since that approval; it is never negative.​
 

4.​ No successful call can read or write a balance or allowance for address(0); no transfer 
to or from address(0) can succeed.​
 

5.​ No external calls occur in state-mutating token functions; reentrancy into those functions 
is impossible.​
 

6.​ Ownership can change only via the two-step protocol; no unauthorized party can gain 
ownership; renounce sets both owner and pending owner to zero.​
 

7.​ There is no mechanism to mint, burn, pause, blacklist, or charge transfer fees.​
 

All invariants are preserved by every public/external function and by every internal helper 
reachable after deployment. 

 

13) Conclusions (Proved Properties) 

 



●​ Fixed supply and supply-cap safety are guaranteed.​
 

●​ Token conservation across transfers is guaranteed.​
 

●​ Allowance accounting is exact and safe from arithmetic errors; the ERC-20 race 
condition is a property of the standard’s semantics, not of this implementation’s safety 
(no unauthorized spend is possible).​
 

●​ No reentrancy vector exists in token flows due to the total absence of external calls.​
 

●​ Zero-address misuse is structurally impossible post-deployment.​
 

●​ No privileged monetary actions (mint/burn/fees/blacklists/pauses) are present or 
derivable.​
 

Accordingly, with respect to the provided source and under standard EVM semantics for Solidity 
^0.8.30, The ChampCoin (TCC) fulfills the above security properties by construction. 

 

 


	Security Assessment Report  
	The ChampCoin (TCC)  
	What it can and can’t do 
	Simple FAQ 
	0) Model & Notation 
	1) Supply-Cap Correctness 
	Theorem 1 (Fixed Upper Bound). 

	2) Conservation of Tokens 
	Theorem 2 (Balance Conservation). 

	3) Zero-Address Safety 
	Theorem 3 (No Balance or Allowance for address(0) is Creatable Post-Construction). 

	4) Allowance Accounting & Safety 
	Lemma 4.1 (Monotone Decrement in transferFrom). 
	Lemma 4.2 (Approval Writes Are Exact). 
	Theorem 4 (Allowance Correctness). 

	5) Reentrancy & External-Call Surface 
	Theorem 5 (No Reentrancy from Token Operations). 

	6) Ownership Safety & Progress 
	Lemma 6.1 (Only Owner Can Initiate Transfer). 
	Lemma 6.2 (Unique Acceptance Right). 
	Lemma 6.3 (Renounce Clears Roles). 
	Theorem 6 (Two-Step Ownership Safety & Liveness). 

	7) Non-Mintable, Non-Burnable, Non-Pausable, Non-Fee Properties 
	Theorem 7 (No Post-Deploy Minting). 
	Theorem 8 (No Burning). 
	Theorem 9 (No Pausing/Blacklisting/Fees). 

	8) Overflow/Underflow Soundness 
	Theorem 10 (No Arithmetic Wraparound in Checked Regions). 
	Theorem 11 (Correctness of unchecked Blocks). 

	9) Event Correctness 
	Theorem 12 (Standards-Consistent Events). 

	10) BEP-20 Surface Completeness 
	Theorem 13 (Explorer Compatibility). 

	11) Composability Guarantees 
	Theorem 14 (ERC-20 Method Set & Return Values). 

	12) Global Invariant Set 
	13) Conclusions (Proved Properties) 


